
Demystifying Intel Branch Predictors

Milena Milenkovic, Aleksandar Milenkovic, Jeffrey Kulick
Electrical and Computer Engineering Department, University of Alabama in Huntsville

Email: {milenkm, milenka, kulick}@ece.uah.edu

Abstract

Improvement of branch predictors has been one of the
focal points of computer architecture research during the
last decade, ranging from two-level predictors to complex
hybrid mechanisms. Most research efforts try to use real,
already implemented, branch predictor sizes and
organizations for comparison and evaluation.

Yet, little is known about exact predictor
implementation in Intel processors, apart from a few hints
in the Intel manuals and valuable but unverified hacker
efforts. Intel processors include performance monitoring
counters that can count the events related to branches,
and Intel provides a powerful VTune Performance
Analyzer tool enabling easy access to performance
counters. In this paper, we propose a series of
experiments that explore the organization and size of a
branch predictor, and use it to investigate Pentium III and
Pentium 4 predictor implementations. Such knowledge
could be used in further predictor research, as well as in
the design of new, architecture-aware compilers.

1. Introduction

Conditional branches are one of the major barriers to
successful program parallelization: when a conditional
branch enters the execution pipeline, all instructions
following the branch must wait for the branch resolution.
A common solution to this problem is the speculative
execution: branch outcome and/or its target are
dynamically or statically predicted, so the execution can
go on without stalls. If the prediction was incorrect,
speculatively executed instructions must be flushed and
their results discarded, which could produce a significant
number of lost execution cycles. While static prediction
can work well for some benchmarks, dynamic prediction
solves the more general case. Hence, methods for better
prediction are continuously investigated and improved,
and in the last decade dynamic branch prediction schemes
have been one of the focal points of computer architecture
research, from two-level predictors to complex hybrid
schemes.

We know that modern commercial processors, such as
Intel Pentium III (P6 architecture) and Pentium 4
(NetBurst architecture) include some form of dynamic
branch prediction mechanisms, but detailed information is
rather scarce. On the other hand, these architectures

include performance monitoring registers that can count
several branch-related events, and Intel provides a quite
powerful tool for easy access to these registers, the VTune
Performance Analyzer [1].

The purpose of this research is to devise a set of
experiments that will explore some relevant parameters of
the branch predictor structure, and to test it on P6 and
NetBurst architectures. These parameters can be used for
code optimization and as a starting point for comparison
in future predictor research. The experiments have also
educational value, providing better understanding of
branch predictor mechanisms.

The experiments are based on the values of
performance counters during the execution of “spy”
microbenchmarks, designed to test the existence and/or
value of a particular branch predictor parameter. While
microbenchmarks have been previously used to determine
the characteristics of memory hierarchy [2] [3], such as
cache line size, cache size, associativity, etc., we are not
aware of similar efforts aimed to explore branch predictor
structures.

This paper is organized into seven sections. The
second section gives a short overview of dynamic branch
prediction schemes, and the third section defines the
problem statement. The fourth section describes the
experimental environment. The fifth section explains the
proposed experiments, and the sixth section presents and
discusses the results. The last section gives concluding
remarks and indicates possible directions for further
research.

2. Dynamic Branch Prediction

No matter how complex a branch predictor is, it could
be described by some variation of the general scheme
(Figure 1), consisting of two major parts: branch target
buffer (BTB), and outcome predictor, for prediction of
branch targets and branch outcomes, respectively.

BTB

...

Outcome Predictor

Figure 1 General Branch Predictor Scheme.

Dynamic prediction of a branch outcome is based on
the state of a finite-state machine, which is usually a two-
bit saturating counter [4]. This counter is a cell of a
branch prediction table (BPT), which could be accessed in
different ways. The simplest BPT index is a portion of the
branch address. More complex two-level predictors
combine the branch address or its part with shift register
representing the history of branch outcomes [5][6][7].
Global two-level predictors benefit from correlation
between subsequent branches during program execution
(global branch history), while local predictors are based
on correlation between subsequent executions of the same
branch (local branch history). Hybrid branch predictors
can include both global and local prediction mechanisms,
as well as some other prediction schemes, such as
specialized loop predictors, or simple BPT [8]. Some
hybrid predictors have parallel organization, where
different predictor components predict branch outcome in
parallel, and a selection mechanism, a predictor itself,
decides which outcome to choose. Other hybrid predictors
have serial (cascaded) organization, where the output of
one predictor stage (predicted outcome) is part of the
input to the other predictor stage [9][10]. Higher predictor
stages are used only when lower stages are not able to
predict the branch outcome correctly. Serial and parallel
predictor organization can also be combined [11]. A very
interesting solution accesses branch predictor table using
“alloyed” global and local branch history as part of the
BPT index [12], thus predicting correctly branches that
depend both on global and local history. It is also possible
to add a third adaptivity level to a predictor [13],
dynamically determining the optimum history length.

Instead of exploiting correlation between outcomes of
last h branches (pattern-based), dynamic branch predictor
can use the information of the path to the current branch
(path-based) [14]. Path history register stores address bits
from each of last executed b branches, thus making the
prediction path-dependant. One predictor can combine
both pattern-based and path-based approaches.

Prediction of branch outcome could be coupled or
decoupled with a BTB. The BTB can hold one or more
possible target addresses, even target instructions.

Since every branch prediction table is of a finite size,
different branches will use the same cell. This effect is
called interference or aliasing [15], and lot of research has
been dedicated to the interference problem [16][17][18].

Some special branch types, such as returns and loops,
could be handled by specialized predictors.

3. Problem Statement

For both P6 and NetBurst architectures, Intel sources
[19], [20], [21] do not provide the exact description of the
implemented branch predictors. Rather, they provide the
exact number of BTB entries and several hints about
program optimization that indicate some outcome
predictor parameters. They state that the static prediction

mechanism predicts backward conditional branches as
taken, and forward branches as not taken. In the P6
architecture, “prediction algorithm includes pattern
matching and can track up to the last four branch
directions per branch address,” [20], which most probably
means that the P6 branch predictor has a local history
component with 4 history bits. The P6 BTB has 512
entries.

In the NetBurst architecture implemented in Pentium
4, Intel claims to use some new prediction algorithm, 33%
better than in P6. One of the assembly/compiler coding
rules for Pentium 4 states that frequently executed loops
with predictable number of iterations should be unrolled
to reduce the number of iterations to 16 or fewer, and if
the loop has n conditional branches, it should be unrolled
so that the number of iterations is 16/n [19]. This rule
indicates that Pentium 4 uses global outcome history, with
probably 16 history bits, but the Intel sources never
specifically say so.

Another interesting characteristic of the NetBurst
architecture, tightly coupled with the branch prediction
mechanism, is an execution trace cache [21], which stores
and delivers sequences of traces, built from decoded
instructions following the execution flow. Intel sources
explain that the trace cache and front-end translation
engine have cooperating branch prediction hardware, so
branch targets can be fetched from the trace cache, or in
the case of trace cache miss, from the second level cache
or memory. The trace cache BTB is smaller (512 entries)
compared to the front-end BTB (4K entries). It seems that
both the trace cache and front-end share the same
outcome predictor mechanism [20], but apart from trace
cache size (12K micro-ops), and cache line size (6 micro-
ops), Intel does not disclose too many details about its
implementation. For example, one interesting question is
whether just the most likely branch path is stored in the
trace cache, or can it store more paths. More stored
branch paths would reduce the number of lost cycles in
the case of misprediction, since the correct instructions
could be fetched from the trace cache instead from higher
levels of memory hierarchy.

Since the exact predictor parameters are important to
software developers, some hacker efforts have been
dedicated to this problem. In his Pentium optimization
manual [22] A. Fog gives a short description of prediction
mechanisms in Pentiums, up to the Pentium III. His
findings include 4 local history bits for P6 architecture,
and a 512-entry BTB organized as 16 ways * 32 sets,
where bits 4-8 define the set. Unfortunately, he did not
present any details about the nature of his experiments, so
one of our goals is to verify his results.

The goal of this research is to determine the branch
predictor parameters most important for code
optimization, by treating branch predictor structure as a
black box and using a set of carefully designed

microbenchmarks. In this paper, we restricted our efforts
to the following parameters:

1. Branch Target Buffer component

• Size and organization.

2. Outcome predictor component

• The existence of a local prediction component, and
the number of local history bits in history register;

• The existence of a global prediction component, and
the number of global history bits in history register.

Considering the specifics of the NetBurst architecture

and importance of the trace cache in the branch prediction
mechanism, we also want to verify whether the trace
cache is able to store both taken and not taken branch
path.

Once determined, these characteristics could help the
code optimization. For example, the size and organization
of BTB indicate how many branches can fit into it in the
critical portion of the code, and the number of local/global
history bits indicates the maximum branch correlation that
a given predictor can recognize.

We are aware that more predictor parameters are
needed for better code optimization. Other relevant BTB
parameters are the number of branch targets that could be
stored per branch, BTB replacement policy, and address
bits used for BTB tag. More complex hybrid predictor
organizations, with several components, require further
experiments to determine the exact component layout and
a way to decide between predictions of different
components. Due to out-of-order instruction execution, it
is not easy to establish whether predictor mechanism is
speculatively updated, or only after branch resolution.
The replacement policy, trace length, and the possibility
of speculative trace constructing are some of the trace
cache parameters that are out of the scope of this paper.
Design of microbenchmarks that would determine some
of these parameters is part of the ongoing research.

Both P6 and NetBurst architectures use return address
stack to predict return addresses, and the size of this stack
is known, so we do not consider any experiments related
to function returns.

Finally, in the case of Intel predictors we were able to
assume some of the predictor characteristics, making the
black box testing more transparent. In the general case,
given a completely unknown predictor mechanism, more
microbenchmarks must be used to determine its nature
and parameters. For example, the outcome predictor does
not have to be coupled with BTB, so it could predict all
branches, and not just those stored in BTB. Loops could
be predicted by a dedicated predictor component, and
some predictor components can be path-based instead of
pattern-based. All predictor components could use some
of the mechanisms aimed to reduce branch interference.
More general framework that would describe experiments

for testing a completely black box predictor will be
considered in future research.

4. Experimental Environment

Both P6 and NetBurst architectures have several
performance counters, and several branch-related events
can be measured. In this research, we consider the number
of retired branches, including unconditional branches, and
the number of mispredicted branches, using event-based
sampling. In some NetBurst experiments, we also
consider the number of execution cycles versus the
number of cycles processor spent in trace cache delivery
mode.

Although event-based sampling is not precise, it gives
a good estimation of the number of events. A performance
counter is configured to count one or more types of events
and to generate an interrupt when it overflows. The
counter is preset to a modulus value that will cause the
counter to overflow after a specific number of events have
been counted. When the counter overflows, the processor
generates a performance monitoring interrupt, and the
corresponding interrupt service routine then records the
return instruction pointer (RIP), and restarts the counter.
Code performance can be analyzed by examining the
distribution of RIPs with a tool like the Intel VTune
Performance Analyzer. In this research we used VTune
version 5.0.

All test benchmarks are compiled using Microsoft
Visual Studio 6.0 C compiler, with disabled optimization,
so we are certain that the compiler optimizations do not
change the order and number of conditional branches. For
experiments with relatively large number of branches, we
have also developed programs to generate benchmarks to
our specification.

In order to get reliable values of performance counters,
the execution time of the monitored code must be
significantly larger than the execution of interrupt service
routine. Therefore, all microbenchmark code is placed
within a loop executing a relatively large number of
times.

5. Experiments and Spy Microbenchmarks

We perform two sets of experiments, one for the P6
and another for the NetBurst architecture.

5.1. Experiments for P6 architecture

Experiments for the P6 architecture consist of two sets,
one aimed at exploring size and organization of the BTB
component, and another exploring the parameters of the
outcome predictor component.

5.1.1. BTB component
The Intel documentation provides the size of BTB, i.e.

NBTB entries [19], [20], but does not describe its
organization - whether it is direct-mapped, 2-way, 4-way,
etc. We perform the experiment with NBTB – 1 conditional

branches in a loop, which makes a total of NBTB
conditional branches in the code. The conditional
branches in the loop are always taken, so they will be
mispredicted by static algorithm if they are not present in
the BTB. We vary the distance between the branches
(fixed for one experiment), so the DM_Index_T bits that
differ one branch address from another are in different
position for different distances (Figure 2). Figure 3 shows
the fragment of the code used for testing BTB
organization.

DM_Index_T

Distance

.........

DM_Index

DM_Index_T

DM_Index_T

...

DM_Index_T

D=2

D=4

D=2i-1

01i-1ii+j-1

D=2i

j = log2NBTB

Figure 2 BTB size and organization: varying the

distance.

...
for (i=0; i < liter; i++) {
 _asm {
 noop
 ...
 noop
 mov eax, 10
 cmp eax, 15
 jle l0
 noop
 ...
 noop
 l0: jle l1
 noop
 ...
 noop
 l1: jle l2
 ...

 l510: noop
 }
}

Figure 3 Benchmark for testing BTB organization.

This experiment discovers the values of “ fitting”
distances DF, when all considered branches at distance DF
can fit in the BTB. Hence, for a distance DF the number of
mispredictions (MPR) will be close to zero, i.e. the
performance counter should count only the negligible
number of mispredictions.

If there is only distance DF, then we can conclude that
the BTB is direct-mapped. Bits used to address the BTB
are Addr[i+j-1 : i] (Figure 2, DM_Index bits). From the
distance DF and the number of BTB entries we can

determine exactly which address bits are used to address
the BTB.

If there are exactly two distances DF, we conclude that
we have the 2-way set-associative organization of the
BTB. Bits used to address the BTB are Addr[i+j-2 : i].
Similarly, if there are exactly three distances DF, the BTB
is 4-way set-associative. In general, if there are m
“ fitting” distances, the BTB is 2m-1-way set associative.
Bits used to address the BTB are Addr[i+j-m : i].

Now we can verify the assumption about the number
of BTB entries by repeating the experiments for the
“ fitting” distances and larger number of branches. For
example, if the real number of BTB entries is twice as
large as the assumed one, and our experiments have found
m distances DF, the set of experiments with the real
number of entries should find m-1 such distances, i.e., the
BTB would be 2m-2-way set associative. In the general
case, if the real number of BTB entries is 2n times greater
than the assumed one, the experiments should find m-n
“ fitting” distances. If the experiments with larger number
of conditional branches do not find any such distance, our
assumption about the size is correct.

The number of ways can be also verified by trying to
find a number of branches to fill a set, and to find a
distance such that those branches will map into the same
set, conditions necessary to increase the number of
mispredictions.

5.1.2. Outcome predictor component
The set of experiments for exploring the characteristics

of outcome predictor component is devised in such a way
that most of the branches in the code are easily
predictable, so we can concentrate on one conditional
branch and its MPR, i.e., the MPR of whole program is
generated by that branch. We call this branch a “spy”
branch. Figure 4 explains the required experiment flow,
step by step.

In the Step 1, we try to determine the maximum length
of a local history pattern that our predictor can correctly
predict, for just one branch in the loop, i.e., the “spy”
branch. The loop condition will have just one different
outcome, on the exit, which is negligible compared to the
number of iterations. Different repeating local history
patterns can be used for this experiment; however, the
simplest pattern has all outcomes the same but the last
one. If “1” means that the branch is taken, and “0” not
taken, such local history patterns are 1111...110 and
0000...001.

Figure 5 shows the code for one such pattern of length
4, while Figure 6 shows the fragment of the
corresponding assembly code. Note that the “spy” branch
if ((i%4)==0) is compiled as jne, so the local history
pattern for this branch is 1110 (pattern length is four). The
fragment does not show the loop, which is compiled as
the combination of instructions jae at the beginning of the

multiple
of distance D

distance D

distance D

loop and unconditional jmp at the end, so the jae outcome
is 0 until the loop exit.

Pattern length = L

local global

Yes No

Step 1: What is maximum length of the
"spy" branch pattern that would be correctly predicted
when the spy branch is the only branch in a loop?

Step 2: Is there (L - 1) bits of local component
or (2*L - 1) bits of global component?

Step 3: Is there a global
component that uses at
least 2 bits of global
history?

Step 4: How many
bits in global history
register?

Step 5: 0 or 1 bit in
global history
register?

Step 6: Is there a local
component that uses at
least n bits of local
history?

Figure 4 Experiment flow for outcome predictor.

void main(void) {
 int long unsigned i;
 int a=1;
 int long unsigned liter = 10000000;
 for (i=0; i<liter; ++i){
 if ((i%4) ==0) a=0; //spy branch
 }
}

Figure 5 Microbenchmark for Step 1 experiment.

; Line 6
 0002e mov eax,DWORD PTR _i$[ebp]
 00031 xor edx, edx
 00033 mov ecx, 4
 00038 div ecx
 0003a test edx, edx
 0003c jne SHORT $L38
 0003e mov DWORD PTR _a$[ebp], 0
$L38:

Figure 6 Fragment of the assembly code for Figure 5
code.

We should get low MPR for all pattern lengths up to a
certain number L, and then the outcome predictor will not
be able to predict the last outcome of “spy” branch. That
is, for each pattern of length l, l>L, the “spy” branch will
be mispredicted once in l times.

However, from this experiment we still can not
conclude whether predictor has a local prediction
component with lh=L-1 history register, or a global
predictor component with gh=2*(L-1) history register.
We must consider two cases:

(a) The outcome predictor has local history
component, so the pattern 11...10 with L-1 1’s and one 0
is correctly predicted; when the pattern is 111...1 (L-1
1’s), the next outcome is predicted to be 0, for 11...10 (L-
2 1’s), the next outcome is predicted to be 1, etc.

(b) The outcome predictor has global history
component, so the local history pattern 11...10 of the
“spy” branch with L-1 1’s was correctly predicted, but by
using global history of previous 2*(L-1) branches. Since
we have just the loop and “spy” branch, there will be no
mispredictions if all relevant local history fits into global
history register. For example, just before executing the
“spy” branch with 0 outcome, the content of the global
history register is 101010...10, where underlined and
bolded 1’s are outcomes of the “spy” branch, and 0’s are
the outcomes of the loop condition branch.

In Step 2, we verify which hypothesis matches our
predictor. If the conditional branch in the loop is preceded
by 2*(L-1) “dummy” conditional branches, having always
the same outcome, we can be certain that no local “spy”
history enters global history register. One example for the
“dummy” branch is if (i<0) a=1. If in this experiment the
MPR still stays low, the correct hypothesis is (a), a local
history component, since the “spy” outcomes are still
correctly predicted. We should proceed to the Step 3, to
determine whether the outcome predictor also has a global
history component.

If the MPR increases (last conditional branch is
mispredicted once in L times), we conclude that the
correct hypothesis is (b), a global history component. We
could get the same result with insertion of just one
“dummy” branch, but we wanted to be sure that there is
no local history in the global history register. In this case,
we should proceed to the Step 6, to determine whether the
outcome predictor also has a local history component.

void main(void)
{ int a,b,c;
 int long unsigned i;

 for (i=1;i<=10000000;++i)
 { if ((i%2) == 0) a=1;
 else a=0;
 if ((i%5) == 0) b=1;
 else b=0;
 if ((a*b) == 1) c=1;
 }
}

Figure 7 Microbenchmark for Step 3 experiment.

The Step 3 microbenchmark has three conditional

branches in a loop, where first two have predictable
patterns 11...10 of different length l1 and l2, such that l1,
l2 < L, and the smallest common denominator for (l1, l2)
is greater then L. The third branch will be correlated with
the first two, by having a pattern 11...10 of length greater

than L, so it cannot be predicted by local component. It
will be not taken when both previous branches are not
taken (Figure 7).

If this experiment still has a low MPR, the predictor
also has a global component with at least two global
history bits. The next step, Step 4, verifies the length of
the global history register. The simplest way is to insert
“dummy” conditional branches (pattern 111...11) before
the “spy” conditional branch. By varying the number of
“dummy” branches, we will get the number of global
history bits, since the “spy” branch will not be predicted
correctly if the number of “dummy” branches is greater
than the number of global history bits – 2, and will always
be predicted correctly for the smaller number of “dummy”
branches.

void main(void)
{ int a,b,c;
 int long unsigned i;

 for (i=1;i<=10000000;++i)
 { if ((i%2) == 0) a=1;
 else a=0;
 if ((i%5) == 0) b=1;
 else b=0;
 if (i<0) a=1; //dummy branch
 ...
 if (i<0) a=1; //dummy branch
 if ((a*b) == 1) c=1;
 }
}

Figure 8 Microbenchmark for Step 4 experiment.

If the 0 “spy” outcome is mispredicted in the Step 3
experiment, it means that there is no global component or
there is just one bit of global history. The Step 5
microbenchmark has just two conditional branches in the
loop, where the first one has local history pattern
111...110 of a length l>L, and the second one has the
same outcome as the first. Since from the Step 3 we know
there is no more than one global history bit, the first
conditional branch will always be mispredicted once in l
times. If there is no global component at all, the second
branch will be mispredicted the same number of times,
while it should always be predicted correctly if there is
one bit global history component. We could determine the
existence of one bit global history predictor by examining
the number of mispredictions in this experiment.

If we have a global component with 2*(L-1) history
bits, do we also have a local component? The Step 6
microbenchmark has 2*(L-1) “dummy” branches (Figure
9), and varies the pattern length l of the “spy” branch. If
the MPR is low for some l, there is an equivalent of local
component with at least l-1 history bits. Depending on the
decision mechanism, there could be more local history
bits, so further experiments might be needed. This is out
of the scope of this paper.

void main(void) {
 int long unsigned i;
 int a=1;
 int long unsigned liter = 10000000;
 for (i=0; i<liter; ++i){
 if (i<0) a=1;//dummy branch 1
 ...
 if (i<0) a=1;//dummy branch 2*(L-1)
 if ((i%l) == 0) a=0; //spy branch
 }
}

Figure 9 Microbenchmark for Step 6 experiment.

5.2. Experiments for NetBurst architecture

Since the NetBurst architecture includes dual BTB
structures, one for front-end processor part, BTBFE, and
another for the trace cache, BTBTC, the experiments
consist of three sets: one set aimed at exploring the size
and organization of front-end BTB component, another to
explore the parameters of the outcome predictor
component, and the third one targeted at the trace cache
BTB.

5.2.1. Front-end BTB component
We will first verify the size and organization of

BTBFE, using the same set of experiments as defined for
the P6 BTB in section 5.2.1.

5.2.2. Outcome predictor
To verify the existence and length of global and local

history registers, we will use the same set of experiments
as defined for the P6 outcome predictor in section 5.2.2.

5.2.3. Trace cache BTB component
We first verify whether both taken and not taken paths

are stored in the trace cache, if executed code includes
both paths. This experiment uses similar microbenchmark
to the one from Step 1 described in section 5.2.2, where a
“spy” branch has both if and else paths. We compare the
number of cycles spent in the trace cache delivery mode
with the total number of cycles, when the number of
mispredictions is low. If the trace cache delivers traces for
most of time, it means that both taken and not taken paths
are stored in the trace cache, and that the trace cache
prediction mechanism points to the correct target.

Microbenchmark for the next set of experiments
includes N “spy” branches in a loop, with the same
behavior and both taken and not taken paths visited
during execution. The “spy” branch behavior is set
according to the results of section 5.2.2 experiments, so
that the number of mispredictions should be relatively low
with the given outcome predictor. For example, if the
outcome predictor has a global component and no local
component, the “spy” branch condition may be if ((i%l)
== 0), so the first “spy” branch will be mispredicted once
in l times, and all other branches should be predicted
correctly, since their outcomes are the same as the

outcome of the first branch and hence predicted by global
component.

We will consider three different cases, where N
conditional branches in each case fit into BTBFE:

(a) Executed code does not fit into trace cache,
(b) Executed code fits into trace cache, but branches do

not fit into BTBTC,
(c) Executed code fits into trace cache, and branches fit

into BTBTC.
In the case (a) the MPR is low, and trace cache spends

relatively few cycles in the delivery mode.
Although in the case (b) all executed code can fit into

the trace cache, some branches will be mispredicted due
to the size of BTBTC. Trace cache spends relatively few
cycles in the delivery mode.

When all branches in the loop fit in the BTBTC, MPR
will be low, and the number of cycles spent in delivery
mode will be close to the total number of cycles.

This set of experiments tries to establish the boundary
values of N for all three cases.

Similarly to the BTBFE experiment, we may try to
establish the number of micro-operations between two
conditional branches in the execution flow, thus
determining the organization of BTBTC.

6. Results

6.1. Results for P6 architecture

6.1.1. Branch Target Buffer component
We assume NBTB=512. The MPR is close to 0%, when

the distance between addresses of subsequent branches is
4, 8, or 16, and close to 100% for other distances (Figure
10). Since we have three different distances producing
low MPR, this result means that P6 architecture has BTB
organized in 4 ways, 128 sets.

From the result of this experiment, we are also able to
determine that address bits 4-10 are used as the set index.
Note that our experiments prove the Pentium III to have
different organization than stated in A. Fog’s optimization
manual [22].

This result can be also obtained by trying to map NWAY
+ 1 branches in the same set, varying the distance
between them and the number of branches (Table 1).

0%

50%

100%

2 4 8 16 32 64
Distance

Misprediction rate

Figure 10 Misprediction rate for NBTB conditional

branches, varying the distance.

Table 1 P6 branches retired and mispredicted when

NWAY + 1 branches map in the same set.

Iterations: 10M, NoBranches: 17

Distance Branches retired Mispredicted

256 168,676,020 2,860

512 175,629,710 39,113,116

1024 179,564,544 159,796,902

2048 178,080,370 157,893,705

Iterations: 10M, NoBranches: 9
Distance Branches retired Mispredicted

512 97,956,788 2,436

1024 98,966,308 39,204,144

2048 99,457,820 79,125,818

Iterations: 10M, NoBranches: 5
Distance Branches retired Mispredicted

512 58,681,763 1,253

1024 58,219,608 29,484

2048 59,219,391 9,792,944

4096 59,807,200 19,687,990

8192 59,736,047 19,548,096

Iterations: 1M, NoBranches: 16
Distance Branches retired Mispredicted

512 17,018,520 1,953

1024 17,050,360 14,938,664

Iterations: 1M, NoBranches: 8
Distance Branches retired Mispredicted

1024 9,028,895 2,520

2048 9,034,300 6,927,480

Iterations: 1M, NoBranches: 4
Distance Branches retired Mispredicted

2048 5,057,136 2,400

4096 5,018,825 4,097

Finally, to verify whether the size assumption was
correct, we run the different distance experiment with
twice as many branches. Table 2 shows results for the P6
architecture for 1024 branches. The distances that
produced low MPR when the number of branches was
512 now produce the MPR close to 100%. From this we
conclude that the number of entries is really 512. Figure
11 shows the BTB size and organization as established by
our experiments.

Table 2 P6 number of branches retired and

mispredicted when the total number of branches is
twice as much as NBTB.

Iter. 1M, NoBranches 1024
Distance Branches retired Mispredicted

4 1,023,000,000 1,017,750,000

8 1,017,400,000 1,016,900,000

16 1,018,900,000 1,020,700,000

0

127
...

Distance

......

Index
013410

P6 Address

21131
P6 BTB

7

Figure 11 BTB size and organization.

6.1.2. Prediction component
Table 3 shows the results of Step 1 experiment (Figure

5). The maximum length of a correctly predicted pattern
is 5. This result can be caused by a local component that
uses 4 bits of local history, or a global component that
uses 8 global history bits.

Table 3 Results of Step 1 experiment.

Iter. Pattern
length

Branches
retired

Mispredicted

10 M 4 27,035,204 420

 5 28,468,884 432

 6 28,205,352 1,545,480

We proceed with the Step 2 experiment that inserts 8

“dummy” conditional branches before the “spy” branch.
Since the MPR is still close to 0 when we have longer
global history pattern, the P6 architecture really uses a
local branch history of length 4.

In the Step 3 experiment, the microbenchmark has 3
conditional branches in a loop, where first two have
patterns 11...10 of length 5 and 2, respectively,
predictable by the local component. The outcome of the
third branch is correlated with the previous two, having a
pattern 11...10 of length ten, not predictable by local

component. The MPR is about 10%, so the P6
architecture does not use a global history pattern of length
greater or equal to two.

The Step 4 experiment is a 10 million iteration loop,
with two conditional branches. First branch has a pattern
111110 of length 6, hence not predictable by the local
component, while the second branch is correlated with it
by having the same outcome. The result is about 3 million
mispredicted branches, so both conditional branches are
mispredicted once in six times. Therefore, the P6
architecture does not include global prediction
component.

6.2. Results for NetBurst architecture

6.2.1. Front-end BTB component
We assume NBTB-FE=4096. Results are similar to the

results of the same experiment for the P6 architecture, i.e.,
the MPR is close to 0%, when the distance between
addresses of subsequent branches was 4, 8, or 16, and
close to 100% for other distances. Therefore, the front-
end BTB has 4 ways and 1024, while bits 4-13 are used as
the set index (Figure 12).

0

1023
...

Distance

......

Index
013413

NetBurst Address

21431
NetBurst BTB

10

Figure 12 Front-end BTB size and organization.

6.2.2. Outcome predictor
Table 4 shows the results of the Step 1 experiment: the

maximum length of a correctly predicted pattern is 9,
which could be explained either by 8 bit local history
register, or 16 bit global history register.

Table 4 Results of Step 1 experiment.

Iter. Pattern
length

Branches
retired

Mispredicted

10 M 5 30,357,420 987

 6 30,362,568 973

 7 30,401,322 957

 8 30,318,387 1,256

 9 30,326,432 918

 10 30,352,542 964,830

In the Step 2 experiment, we insert 16 “dummy”

branches before the “spy” branch with a local pattern of
length 9, and the measured MPR is about 10%. Therefore,
the Step 1 result is caused by a global component that

uses 16 global history bits (the “spy” branch in the Step 2
is mispredicted once in 9 times).

After several runs of different Step 6 experiments, first
conclusion might be that the NetBurst architecture uses
one local history bit for prediction (Table 5). Because this
architecture includes the trace cache, we run an additional
experiment, with structure from the Step 6 repeated 10
times (16 “dummy” branches, one “spy” with local
history pattern of length 2). Ten “spy” branches have the
MPR of about 50%, which is expected for the outcome
predictor without any local component. Hence, low MPR
in the Step 6 with pattern length 2 is due to the trace
cache, most probably since it was able to store the
sequence “ loop, 16 dummy branches, spy taken, loop, 16
dummy branches, spy not taken” as one continuous trace.

Table 5 Results of Step 6 experiment.

Iter. Pattern length Mispredicted branches
10 M 2 0%

 3 33%

 4 25%

 5 20%

6.2.3. Trace cache BTB component
In the experiment with one “spy” branch in a loop,

having both if and else paths and pattern of length 9, the
number of cycles the trace cache spent in delivery mode is
close to the total number of execution cycles. This result
indicates that trace cache is able to store both branch
paths, if both are executed.

Since in the previous section we ascertain that the
NetBurst architecture does not have a local component,
we might use N “spy” branches if (i%3==0). In this
paper, we discuss one example for each of (a), (b), (c)
cases, while the determining of exact border values of N
is not considered here. The distance between spy branch
addresses is 32.

For N=2048, the MPR is relatively low (case (a)),
since for this value of N microbenchmark code does not
fit into the trace cache, but its branches fit into BTBFE.
For N=512, the MPR is close to 100%, since executed
code can fit into the trace cache, but executed branches do
not fit into BTBTC (case (b)). The example for case (c) is
when N=127 – MPR is close to 0%, since branches fit
into BTBTC.

7. Conclusion

Although a lot of research effort has been dedicated to
the branch predictors in the last decades, modern
processors still hide the exact predictor implementation
details. In this paper we propose a set of experiments
aimed at systematically determining the organization of
the BTB components, i.e., number of BTB ways and bits

used for the set index, the existence of local and global
history component, and the corresponding number of
history bits. We use Microsoft C compiler and Intel
VTune Performance Analyzer tool.

Our experiments show that the BTB in the P6
architecture is 4 ways, same as the NetBurst’s front-end
BTB. The P6’s 128 sets are accessed by address bits 4-10,
while the NetBurst’s 1024 sets are accessed using bits 4-
13. The P6 predictor has a local history component with 4
local history bits, while the NetBurst architecture has a
global history component with 16 global history bits. The
trace cache in the NetBurst architecture is able to store
both taken and not taken branch paths, if both paths are
visited during program execution. The determining of
exact organization of the trace cache BTB is part of the
ongoing research.

We also plan to design experiments aimed to discover
other predictor parameters, such as the choice of bits for
BTB tag, number of different branch targets stored in
BTB, number of bits and starting state of prediction state
machines, organization of the outcome predictor
component in more complex predictors, etc. We hope that
further research in this direction will improve the code
optimization and understanding of the predictor
mechanisms.

References

[1] Intel VTune™ Performance Analyzer,
www.intel.com/software/products/vtune/

[2] C.L. Coleman, J.W. Davidson, “Automatic memory
hierarchy characterization,” ISPASS 2001, pp. 103 –
110.

[3] R. Saavedra-Barrera, “CPU Performance Evaluation
and Execution Time Prediction Using Narrow
Spectrum Benchmarking,” PhD Thesis, Berkeley,
1992

[4] J.E. Smith, “A study of Branch Prediction
Strategies,” 8th ISCA, 1981, pp. 135–148.

[5] T-Y. Yeh, Y.N. Patt, “Two Level Adaptive Training
Branch Prediction,” Micro-24, 1991, pp. 51-61.

[6] S-T. Pan, K. So, J.T. Rahmeh, “ Improving the
Accuracy of Dynamic Branch Prediction Using
Branch Correlation,” ASPLOS V, 1992, pp. 76-84.

[7] S. McFarling, “Combining Branch Predictors,”
WRL Technical Note TN-36, Digital Equipment
Corporation, June 1993.

[8] M. Evers, P.-Y. Chang, Y.N. Patt, “Using Hybrid
Branch Prediction to Improve Branch Prediction
Accuracy in the Presence of Context Switches,”
23rd ISCA, 1996, pp. 3–10.

[9] K. Driesen and U. Hölzle, “The Cascaded Predictor:
Economical and Adaptive Branch Target
Prediction,” MICRO-31, pp. 249 -258.

[10] S. McFarling, “Branch predictor with serially
connected predictor stages for improving branch
prediction accuracy,” US Patent 6374349, 2002.

[11] Baweja, et al., “Branch prediction architecture,” US
Patent 6332189, 2001.

[12] K. Skadron et al., “A taxonomy of branch
mispredictions, and alloyed prediction as a robust
solution to wrong-history mispredictions,” PACT
2000, pp. 199-206.

[13] T. Juan, S. Sanjeevan, J. Navarro, “Dynamic History
Length Fitting: A Third Level of Adaptivity for
Branch Prediction,” 25th ISCA, 1998, pp. 155–166.

[14] R. Nair, “Dynamic Path-Based Branch Corelation,”
Micro-28, 1995, pp. 15-23.

[15] S. Sechrest, C.-C. Lee, T. Mudge, “Correlation and
Aliasing in Dynamic Branch Predictors,” 23rd
ISCA, 1996, pp. 22–32.

[16] P. Chang, M. Evers, Y. Patt, “ Improving Branch
Prediction Accuracy by Reducing Pattern History
Table Interference,” PACT 1996.

[17] E. Sprangle, R.S. Chappell, M. Alsup, Y.N. Patt,
“The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference,” 24th ISCA,
1997, pp. 284-291.

[18] A.N. Eden, T. Mudge, “The YAGS Branch
Prediction Scheme,” MICRO-31, USA, 1998.

[19] Intel ® Pentium ® 4 and Intel ® Xeon™ Processor
Optimization –Reference Manual, www.intel.com

[20] Intel® Architecture Software Optimization
Reference Manual, www.intel.com

[21] G. Hinton et al, “The Microarchitecture of the
Pentium® 4 Processor,” Intel Technology Journal,
1st quarter 2001.

[22] A. Fog, “How to optimize for the Pentium®
microprocessors,” www.agner.org/assem/

